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The equilibrium shapes of non-uniform vortices in the ocean�
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Abstract

The problem of the equilibrium shapes of rotating vortices in a stratified ocean, which is in a statically stable state, is considered
within the framework of the model of an ideal incompressible fluid. An equilibrium shape is a surface on which the pressures in the
vortex and in the ocean are equal, in which case, on this surface the normal components of the velocities of the media are equal to
zero, but a discontinuity of the tangential components is allowed. The case of stratification of the media along the local vertical is
considered. The external medium (the ocean) may consist of several layers, differing sharply in density.
© 2007 Elsevier Ltd. All rights reserved.

The problem of the longevity of vortices in the World ocean, having various shapes (in oceanology deep-water
vortices are called “lenses”, and shallow-water vortices are called “rings”), is obviously related to the presence of
equilibrium shapes of a rotating liquid in a stratified continuous medium, which is in static equilibrium. This problem
is considered in different formulations, in particular, in Refs. 1–4, where a procedure for the construction and the
form of the equilibrium shapes in the case of a uniform density of the vortices and linear stratification of the ocean
surrounding them are described. Below we consider other approaches to constructing the equilibrium shapes, which
enable the problem of constructing the shapes in certain cases of non-uniform density of the vortices and also in the
case of an arbitrarily varying density of the external medium along the vertical to be solved.

1. Formulation of the problem

Equilibrium shapes of a uniform “lens”, the centre of which is fixed, and which is rotating in an unperturbed linearly
stratified ocean, were constructed in Refs. 1–3. Below it is assumed that the density of the lens and of the ocean are
known functions of only one vertical coordinate z.

We will consider Euler’s equations in the Gromeka Lamb form5

(1.1)

written for the steady case in axes Cxyz connected with the rotating Earth on the assumption that the force of gravity
has constant components over the whole lens, i.e., g = const. The point C is the conventional centre of the lens, at rest
in the ocean; the x, y and z axes are directed east, north and along the local normal (upwards) at the point C, � is the
angular velocity of rotation of the Earth, v is the velocity vector, p is the pressure, and � ≡ �(z) is the density of the
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liquid of which the lens consists. Assuming that the vertical components of the velocity in the body of the lens are zero
(vz = 0), we can write Eq. (1.1) in the scalar form

(1.2)

The components of the angular velocity of rotation of the Earth in these formulae �y, �z are constant quantities and
�x = 0. We will supplement relations (1.2) with the continuity equation, which in the case considered has the form

(1.3)

Suppose the horizontal components of the velocity are related to x and y by the linear low

(1.4)

with coefficients, which are as yet unknown functions, and az(0) = bz(0) = 0. The densities of the lens and the ocean
(each in its own region), and all the functions occurring in expansion (1.4), as well as the required equilibrium surface
will be assumed initially to be continuously differentiable; in particular, we will assume that this surface has no edges
or other similar singularities. For the velocity field, defined by formulae (1.4), the continuity Eq. (1.3) is satisfied
automatically.

We will obtain the conditions of compatibility of Eq. (1.2) (from the criterion for the existence of a total differential
in the differential expression �xdx + �ydy + �zdz ≡ dp(x, y, z)). Using equalities (1.4) we obtain the components of
the vector �. The compatibility condition ∂�x/∂y = ∂�y/∂x is satisfied automatically. For the other two conditions
(∂�x/∂z = ∂�z/∂x and ∂�y/∂z = ∂�z/∂y), equating terms with the variables x and y for the first and zero powers, we
arrive at a system of equations in five functions of the variable z: �, ax, ay, bx and by (henceforth we will use a prime
to denote derivatives with respect to the z coordinate)

(1.5)

Equalities (1.5) guarantee that the compatibility conditions are satisfied identically.
System (1.5) has the following three first integrals

(1.6)

Suppose the constant c1, c2 and c3 of these integrals are known. Then, the unknown functions of the model (1.4) can
be found: they are determined in terms of the final formulae or in quadratures.

The equilibrium shape of a lens must satisfy the condition that no particles either of the lens itself or of the ocean
can pass through its surface (i.e. the condition for the normal projections of the velocities onto the boundary of the lens
to be equal to zero). We will assume,1–3 that the ocean outside the lens is stratified and is in static equilibrium. The
density of the ocean �f and the pressure pf are certain functions of the vertical coordinate z. The following equality
must hold on the surface of the equilibrium shape

(1.7)

The normal n at each point of this surface is collinear with the vector grad(p − pf(z)). We will express grad p from
the fundamental Eq. (1.1) in terms of the kinematic variables. Since the velocity field (1.4) considered assumes that
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the vertical component of the velocity vz is equal to zero, it is sufficient to consider the impermeability condition v ·
n = 0, and consequently, the vector n only along the horizontal coordinates x and y. We have

Then, we have the following condition on the lens surface

(1.8)

or, taking relations (1.3) and (1.4) into account,

(1.9)

2. A uniform lens

It can be shown that a lens situated at the equator (�z = 0), cannot have an equilibrium shape even when � is not con-
stant. We will therefore consider the general case when �z �= 0. Suppose the lens has constant density �(z) = �0 = const.
According to conditions (1.5), �, ay and bx are constant quantities, while the function az and bz are linear in z. Suppose
the ocean has a linear stratification1–3

As follows from this formula, and also from Eq. (1.2), the surface (1.7) is a second-order surface in the variables x,
y, z. If condition (1.9) is not satisfied identically, the left-hand side of it is also a quadratic function F(x, y, z), in view
of relations (1.4). On the lens surface p − pf = 0 the function F vanishes. Hence we conclude that the conditions F(x,
y, z) = 0 and p − pf = 0 describe the same second-order surface. Otherwise (condition (1.9) is satisfied identically), the
function F is identically equal to zero and the following equalities are satisfied

(2.1)

Nevertheless condition (2.1) cannot not be satisfied. In fact, when v = 0 condition (1.9) is automatically satisfied.
But conditions (1.9) and (1.7), which specify the equilibrium shape, are equivalent. Hence we conclude that the centre
of rotation in each section z lies on the surface of the lens. This conclusion, however, contradicts common sense, and
hence the only way to avoid a contradiction is to assume that Eq. (2.1) are satisfied.

We will consider the functions az and bz, which are linear in z by virtue of system (1.5): az = �z and bz = �z, where
the constants � and � must satisfy the system

(2.2)

If, in the first of these relations, the expression in brackets is equal to zero, i.e. ay = 2 �z, then bx + 2 �z = 0 by virtue of
Eq. (2.1). If ay �= 0, then �y = 0; in the opposite case, ay = �z = 0, i.e., the lens is situated either at the Earth’s pole or at
the equator. If it is situated at the pole (�y = 0), we have a special case, since the Earth rotates in a positive direction
around the z axis with angular velocity �z = �, while the lens rotates in the opposite direction with double this velocity.
It is easy to show that the equilibrium shape here is indeterminate, in the same way as the parameters � and � are not
defined uniquely from relations (2.2). The reason for this paradoxical situation is the equality of the oppositely directed
centrifugal force (due to the inherent rotation of the lens) and of the Coriolis force of inertia; their sum is always equal
to zero.

In the general case when ay − 2�z �= 0 (this, in particular, can again be the Earth’s pole), taking relations (2.1) and
(2.2) into account we arrive at the equalities

i.e., vx = −bxy + �z, vy = bxx. Apart from the notation, we have the same formulae which specify the velocity field
inside the lens as in Refs. 1–3. In this case, the parameter bx has the meaning of the constant angular velocity of rotation
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of the lens �0, while the ratio �/bx = 2�y/(bx + 2�z) represents the position of the centre of rotation of the lens (x0 = 0,
y0 = (�/bx)z) in each horizontal section z = const. The geometrical position of all the centres of rotation is a straight
line in the (y, z) plane, which is inclined at a small angle to the y axis (to the z axis) for values of the angular velocity
�0 that are small (large) in modulus. For linear stratification of the ocean the equilibrium shape of the lens is some
second-order surface.

3. A non-uniform lens

In the case of an arbitrary function � = �(z), the solution of the problem will also be constructed on the assumption
that equalities (2.1) are satisfied (in fact the need for them to be satisfied can be strictly validated). The impermeability
condition (1.9) is then also satisfied.

It follows from the last two relations of (1.6) that �bx(bx + 2�z) = c, i.e.,

(3.1)

and, by virtue of Eq. (1.5) and equalities (2.1), we obtain

The parameters c, d and h are constants of integration. Since the origin of coordinates x = y = z = 0 is assumed to be a
fixed point of the lens, we can put the constants d and h equal to zero. Then

i.e. the quantity bx has the meaning of the angular velocity �(z) of points of the lens in the section z = const. The constant
c, defined by formula (3.1), depends directly on the angular velocity, and hence is not equal to zero. From formulae
(1.2) we can now obtain an explicit form of the partial derivatives of the pressure p with respect to the coordinates x, y
and z, from a consideration of which it follows that the pressure inside the lens is given by the expression

(3.2)

4. The shape of the equilibrium surface

It follows from expression (3.2) that the equilibrium shape of the lens in each section z = const is a circle with centre
at the point with coordinates

(4.1)

and radius given by the relation

(4.2)

Here pf(z) is the pressure in the ocean at the corresponding depth. Naturally, the density �f and the pressure pf in the
ocean are connected by the hydrostatics relation dpf/dz = −g�. Formulae (4.1) and (4.2) are the basis of the proposed
method of constructing the required equilibrium surface: this surface is regarded as the envelope of a family of circles
of radius R(z) in the corresponding sections z = const, where the centres of these circles form a certain line in the (y, z)
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plane. The equilibrium shapes were constructed earlier in Refs. 1–3 as second-order surfaces in x, y, z coordinates in
the special case of a uniform lens and a function �f linear in z.

Expression (4.2) can be simplified further:

(4.3)

whence, in particular, it follows that extremum values of R are observed at the “zero” level of z�, where � = �f. If, for
the given value of z, the sign of the right-hand side of (4.3) is opposite to the sign of c, the plane z = const does not
intersect the lens. Suppose, for simplicity, that z� = 0. Then

(4.4)

and, if this value is positive, the lens always has a certain equilibrium shape, even if it is thin and situated close to the
section z = 0.

We will make the following assumption: a unique value of z� exists such that

(4.5)

This indicates that the upper (lower) layers of the lens contain a liquid of higher (correspondingly lower) density than
the surrounding medium at this depth. Then, it follows from relation (4.3) that the lens can have a closed equilibrium
shape only when c < 0. If condition (4.5) is satisfied and the equilibrium shape is closed, this means physically that the
right-hand side of Eq. (4.4) is positive, i.e. the plane z = 0 intersects the lens and certain depths z correspond to such a
lens of closed shape.

Using relation (4.3) we can verify that the following condition is satisfied

which corresponds to Archimedes law. When c < 0 there are also non-closed equilibrium shapes, but only in the special
case when the improper integrals

∫ ±∞
0 [�(z) − �f (z)]dz or at least one of these integrals converge.

If c > 0, expression (4.4) can only be positive when pf0 > p0. An equilibrium shape also exists here but, in view of
conditions (4.3) and (4.5), it is open.

According to equalities (3.1), c = ��(� + 2�z) (� is the angular velocity of natural rotation of the lens around the z
axis in the section z = const), and we can also take the zero z level as the level of z at which to calculate this constant.

5. A lens in a multilayer medium

We will assume that the lens is situated in a medium consisting of three layers, which differ considerably in density.
For simplicity suppose the densities of the upper and lower layers are constant. The upper, lighter, layer can be the
atmosphere, while the lower, heavier, layer can either be a region of increased salinity or even the bottom of a reservoir,
if the density of this layer approaches infinity. On contact with the lens the horizontal boundaries of the layers can
easily be distorted.

When constructing the equilibrium shapes we will use formula (4.3) obtained above, which enables us to construct
the shapes corresponding to each of the layers separately. The presence of several layers in the ocean undoubtedly is
capable of somehow affecting the shape of anticyclones (more accurately, formations when c < 0), when this shape is
closed. But this factor particularly strongly influences the equilibrium shape of cyclones (more accurately, formations
with c > 0), by changing their open equilibrium shape to a closed shape.

Cyclones. Suppose condition (4.5) is satisfied. The equilibrium shape of cyclones in a single-layer medium resembles
a one-sheet hyperboloid of infinite length with a curved axis along the line of the centres of rotation of the sections
z = const. Any truncation of this formation with the separation of the central part, for example a consideration of the
part between two planes perpendicular to the z axis, does not give equilibrium shapes. Only the whole formation can
be regarded as an equilibrium shape, naturally, as a purely theoretical equilibrium shape. For certain distribution laws
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of the densities of the lens and the medium this formation may be split into two semi-infinite regions (here the zero
level z� is in a layer not belonging to the lens). These regions can also be regarded as a theoretical equilibrium shape,
but only if they are also somehow connected with one another mechanically, since the lower part, which is lighter than
the external medium, will tend to float up and it must be restrained from floating up by the upper part, which is heavier
than the external medium.

In a three-layer (and even in a two-layer) external medium, the situation with these theoretical equilibrium shapes
of the cyclones is capable of changing. According to relation (4.3), for positive c the derivative of the square of the
radius R with respect to z is proportional to g[�(z) − �f(z)], i.e. the value of R2 increases as z increases when � > �f (and
the more rapidly the greater the difference in the densities) and decreases when � < �f. When it comes in contact with
the lighter (heavier) liquid the upper surface of the lens (correspondingly the lower surface) is deflected downwards
(upwards), forming a lune; the tops of both lunes lie on the line of centres of rotation. When it comes in contact with
the middle layer (the ocean) the lens forms the shape described in Section 4 – the analogue of a one-sheet hyperboloid,
and its minimum section (“waist”) arrives exactly at the level z�. The slow change in the value of R2 when it comes
in contact with the middle layer is explained by the smallness of the modulus of the difference � − �f; conversely, the
relatively rapid change in R2 in the lunes is due to the fact that this difference is not small. The closed equilibrium
shape obtained also satisfies Archimedes law.

We will obtain the shape of the lune. Consider, for example, the upper lune. We transfer the origin of coordinates
along the z axis to the bottom of the lune, where R(z = 0) = 0. We then have from Eq. (4.3)

i.e. the shape of the lune is close to a paraboloid of revolution. Here �1
f is the density (constant, for simplicity) of the

light layer of liquid. The depth of the lune (equal to the height h of the upper edge above the level z = 0) is given by the
approximate formula

(5.1)

Similar formulae can be obtained for the lower lune, and its depth is inversely proportional to �2
f − �(−H), where

H is the level of the lower surface of the middle layer and �2
f is the density of the heavy layer of liquid. In particular,

where �2
f → ∞ the depth of the lower lune approaches zero, i.e. the extremely dense lower layer is equivalent in its

action to the bottom. An anticyclone with the same constant c > 0 has the same equilibrium shape.
Cyclones can have real equilibrium shapes, i.e. bounded in space, in a two-layer medium,3 in which, unlike the

case considered above, there is no upper or no lower layer. If there is no lower layer, the lenses are heavy compared to
the middle layer, and if they are lower, conversely, they are light. The excess or deficiency in the weight of a lens is
compensated by the lunes, filled with liquid of light upper or heavy lower layers respectively. This enables the lens to
be balanced in the middle layer.

In conclusion we will touch upon the case when the densities � and �f increase with the depth of the ocean, but
condition (4.5) is violated: there are several values of the zero level z�. In this case, as follows from relation (4.3), the
lens, even in a single-layer external medium, can also have a definite number of isolated closed vortices at different
depths. In Section 6 we will discuss, in particular, some solutions relating to this type.

Anticyclones. In principle, all the discussions relating to the case of a cyclone also apply to anticyclones. The
single important difference is the fact that anticyclones can have a closed equilibrium shape (of the ellipsoid type) in a
single-layer external medium also. If other layers also play a role in forming this shape, “humps” rather than “lunes”
occur on their boundary, the height of which is related to the radii of the base of the humps by relations similar to (5.1).

6. Numerical investigation

The aim of the numerical investigation of the problem was to construct the equilibrium shapes of the lenses, i.e.,
to construct specific relations between the radii of its horizontal sections R and the ocean depth z. We used actual
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Fig. 1.

distributions of the ocean density over the depth for regions of the North Atlantic close to the coast of the USA.6 The
main calculations were carried out for the ocean in the neighbourhood of Cape Hatteras (latitude 35◦N). We considered
different versions of cyclonic (c > 0) and anticyclonic (c < 0) vortices, differing in the angular velocity of rotation �
at characteristic levels z�; we considered versions of actual density distribution patterns in the ocean and lenses with
different density gradients d�/dz. We assumed everywhere that at the level z40 = −200 m the value of R is exactly equal
to 40 km. The fundamental formula (4.3) employed in these constructions enables the actual ocean density to be taken
into account, since the necessary quadratures are easily determined using computer techniques. Some results of the
numerical investigation are presented below.

In Fig. 1 we show graphs of R = R(z) in the case of a cyclone (the left part of Fig. 1) for � = 0.2 � (curves 1 and 2)
and � = 0.5 � (curves 3 and 4), and also in the case of an anticyclone (the right part of Fig. 1) for � = −0.2 � (curves
1 and 2) and � = −0.5 � (curves 3 and 4) respectively, when z� = z40 and d�/dz = 0. Graphs of R(z) taking into account
the actual ocean density in the so-called “western zone III-3”,6 are shown by the continuous curves, while the dashed
curves show the same dependence but in the case when the ocean density is replaced by its linear representation.
Mental rotation of any of the curves shown in Fig. 1 around the vertical z axis, corresponding to R = 0, reconstructs
the qualitative pattern of the equilibrium surface of the lens. The equilibrium shapes in the case of a cyclone are open,
while in the case of an anticyclone they are closed. It can be seen that the continuous curves, and the dashed curves
corresponding to them, differ less the greater the modulus of �.

The graphs give an approximate representation of the error in finding the equilibrium shapes when the actual ocean
density is replaced by its linear approximation. Later the regime z� = z40, d�/dz = 0 and � = 0.2 � for a cyclone and
� = −0.2 � for an anticyclone were considered as “basic”, it was marked by points on the graph and different versions
were constructed in the neighbourhood of this regime. In order to understand how any actual ocean density distribution
pattern affects the equilibrium shape, we constructed graphs of R(z) for the basic regime, where we took as the ocean
density distribution laws the distributions not only in the III-3 zone but also in the “coastal I-1” and “Newfoundland
I-2” zones.6 (These zones are also close to Cape Hatteras.) In the case of both a cyclone and an anticyclone the graphs
for zone I-1 hardly differs from curves 1. The graph for the I-2 zone in the case of a cyclone almost coincides with curve
3, although earlier when constructing it entirely different factors were taken into account. In the case of an anticyclone
this is curve 5.

The most interesting results, perhaps, were obtained when specifying different values of d�/dz �= 0. In Fig. 2 we
show graphs in the neighbourhood of the basic regime of a cyclone. Curves 1–5 relate to the cases of an increase in the
conventional density �t of the lens by 0, 0.1, 0.2, 0.3 and 0.46 units in each 100 m below the level z40, respectively. (The
conventional density �t = 103 × (� − 1 g cm−3)/1 g cm−3 is a dimensionless quantity and � is the density in g cm−3.)
We draw attention to curve 5, which corresponds to an equilibrium shape closed from below with maximum depth of
occurrence (z = −500 m). It consists of an open cyclonic top (half of a one-sheet hyperboloid) and a closed anticyclonic
bottom (which recalls half of an ellipsoid in shape). The presence of such a combined shape can be explained by the
more rapid growth of the density of the lens at deep levels compared with the increase in the ocean density. Thus, at a
depth z = −500 m the conventional density is 27.66 for the lens and 26.75 for the ocean. However, the value 27.66 can
occur in practice in the III-3 zone: an ocean density of this magnitude occurs at a depth of 2.5–3 km. (On the surface
of the ocean in the III-3 zone the conventional density is approximately 24.5.)
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Fig. 2.

Fig. 3.

In Fig. 3 we show similar curves in the case of an anticyclone. Curves 1–5 relate to the cases when the conventional
density �t of the lens increases by 0, 0.1, 0.2, 0.3 and 0.4 units in each 100 m below the level z40. The equilibrium
shapes here (apart from curve 1) consist of a closed anticyclonic top and an open cyclonic bottom. (In Fig. 2 the
pattern was the opposite.) Here also curve 5 is the most characteristic. The increase in the value of R at deep levels is
explained by the change in the sign of the constant c and the higher density of the material of the lens compared with
the surrounding ocean.

The curves in Figs. 2 and 3 confirm that a change in the density inside the lens may be a factor capable of changing
the closed form of the equilibrium shape into an open form and vice versa.

In Fig. 4 we show how the heights of the humps or the depths of the lunes (h, cm) depend on the radii R (km) of the
vortices when they reach the ocean surface. The calculations were carried out using formula (5.1). The heights of the
humps (positive values of h correspond to these) were determined for the basic anticyclone regime, and the depths of
the lunes were calculated for the analogous case of a cyclone.

7. The equilibrium shapes of rotating lenses in the case of a vertical-radial distribution of their density

As a generalization of the initial formulation of the problem, we can consider the more general case of the density
distribution of a vortex � = �(z, r) and the same velocity field (1.4)
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Fig. 4.

The continuity equations and the impermeability condition (1.8) are satisfied automatically. It can be shown that the
pressure inside the lens will now be described by the formula

while the density must be related to the angular velocity by the relation

Referring to the case of actually existing lenses, where the angular velocity of natural rotation �(z) is almost constant
and equal to a certain quantity �0, we obtain from the last formula

where F is a certain function. For actual values of �0 and for actual dimensions of the lenses the contribution of the
term with the coefficient r2 to the vertical coordinate z is small.
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